PDF RAG Search Tool
Description
PDF RAG Search is a versatile tool that enables semantic search capabilities within PDF documents. It supports both Node.js and browser environments, making it perfect for various PDF analysis scenarios.
Enhance your agents with:
- PDF Processing: Efficient extraction and analysis of PDF content
- Cross-Platform: Works in both Node.js and browser environments
- Smart Chunking: Intelligent document segmentation for optimal results
- Semantic Search: Find relevant information beyond keyword matching
Installation
First, install the KaibanJS tools package and the required PDF processing library:
For Node.js:
npm install @kaibanjs/tools pdf-parse
For Browser:
npm install @kaibanjs/tools pdfjs-dist
API Key
Before using the tool, ensure you have an OpenAI API key to enable the semantic search functionality.
Example
Here's how to use the PDFSearch tool to enable your agent to search and analyze PDF content:
import { PDFSearch } from '@kaibanjs/tools';
import { Agent, Task, Team } from 'kaibanjs';
// Create the tool instance
const pdfSearchTool = new PDFSearch({
OPENAI_API_KEY: 'your-openai-api-key',
file: 'https://example.com/documents/sample.pdf'
});
// Create an agent with the tool
const documentAnalyst = new Agent({
name: 'David',
role: 'Document Analyst',
goal: 'Extract and analyze information from PDF documents using semantic search',
background: 'PDF Content Specialist',
tools: [pdfSearchTool]
});
// Create a task for the agent
const pdfAnalysisTask = new Task({
description: 'Analyze the PDF document at {file} and answer: {query}',
expectedOutput: 'Detailed answers based on the PDF content',
agent: documentAnalyst
});
// Create a team
const pdfAnalysisTeam = new Team({
name: 'PDF Analysis Team',
agents: [documentAnalyst],
tasks: [pdfAnalysisTask],
inputs: {
file: 'https://example.com/documents/sample.pdf',
query: 'What would you like to know about this PDF?'
},
env: {
OPENAI_API_KEY: 'your-openai-api-key'
}
});
Advanced Example with Pinecone
For more advanced use cases, you can configure PDFSearch with a custom vector store:
import { PineconeStore } from '@langchain/pinecone';
import { Pinecone } from '@pinecone-database/pinecone';
import { OpenAIEmbeddings } from '@langchain/openai';
const embeddings = new OpenAIEmbeddings({
apiKey: process.env.OPENAI_API_KEY,
model: 'text-embedding-3-small'
});
const pinecone = new Pinecone({
apiKey: process.env.PINECONE_API_KEY
});
const pineconeIndex = pinecone.Index('your-index-name');
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
pineconeIndex
});
const pdfSearchTool = new PDFSearch({
OPENAI_API_KEY: 'your-openai-api-key',
file: 'https://example.com/documents/sample.pdf',
embeddings: embeddings,
vectorStore: vectorStore
});
Parameters
OPENAI_API_KEY
Required. Your OpenAI API key for embeddings and completions.file
Required. URL or local path to the PDF file to analyze.embeddings
Optional. Custom embeddings instance (defaults to OpenAIEmbeddings).vectorStore
Optional. Custom vector store instance (defaults to MemoryVectorStore).chunkOptions
Optional. Configuration for text chunking (size and overlap).
Is there something unclear or quirky in the docs? Maybe you have a suggestion or spotted an issue? Help us refine and enhance our documentation by submitting an issue on GitHub. We're all ears!